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What is Reputation?

Small uncertainty has a Magnifying effect in dynamic games

Eg. The Chain Store Paradox

- Complete vs. Incomplete information

- Weak monopolist could build a reputation as Strong.
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Literature

In Discrete-time:

• Kreps and Wilson (1982) and Milgrom and Roberts (1982)

• Fudenberg and Levine (1989, 1992)

In Continuous-time:

• Faingold and Sannikov (2011)

- 2 players
- continuous-time: t ∈ [0,∞)
- single commitment type
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Our paper

Our paper study reputation with:

• continuous-time

• 2 players: one long-lived and a continuum of short-lived

• one-sided incomplete information

• multiple commitment types
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Why is this important?

• Slight uncertainty is important for building reputation

• How to rule out all types but one?

- Multiple vs. Single

• Robustness check

- Fudenberg and Levine (1989, 1992): enough if there is the
Stackelberg type
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Contribution

• Multiple types case cannot be reduced to Single type case
• We characterize a PDE for optimal payoff function

- Find an approximate Markov equilibrium

• We characterize a condition for optimal actions

• We find a stochastic representation of the approximate
solution
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Model

An infinite-time horizon dynamic game with imperfect monitoring:
• A long-lived large player chooses at ∈ A

- For r > 0, ∫ ∞
0

re−rtg(at, b̄t)dt

• A continuum of infinitely lived small players : i ∈ [0, 1]

- Each i chooses bit ∈ B with aggregate dist b̄t
- For r > 0 ∫ ∞

0

re−rth(at, b
i
t, b̄t)dt
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Model (cont.)

A type space {T0, T1, ..., TK} supports small players’ prior:

• T0 is a normal type with belief θ0,t

• For k ∈ {1, ...,K}, Tk is a commitment type with belief θk,t
- Tk is believed to play a fixed action a∗k ∈ A every time

A belief space is defined:

∆K−1 =

{
θt =

(
θ1,t, ..., θK,t

)
∈ RK+

∣∣ K∑
k=1

θk,t = 1− θ0,t < 1 and θk,t > 0 for every k ∈
{

1, ...,K
}}
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Model (cont.)

Public signals
{
Xt

}
t≥0

follows the diffusion process:

dXt = µ(at, b̄t)dt+ σ(b̄t)dBt

•
{
Bt
}
t≥0

is a d-dimensional Brownian motion with d ≥ K
• µ(at, b̄t) ∈ Rd and σ(b̄t) ∈ Rd×d

The continuation value of T0 at time t ≥ 0:

Wt(S) = Et

{∫ ∞
t

re−r(s−t)g(as, b̄s)ds
∣∣ T0

}
where S =

{
(as, b̄s)

}
s≥0

is a strategy profile.
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Faingold and Sannikov (2011)

A bounded process
{
Wt

}
t≥0

is the process of continuation values
of the normal type under a public strategy profile
S =

{
(as, b̄s)

}
s≥0

iff for some β =
{
βt
}
t≥0
∈ L,

dWt = r
(
Wt − g(at, b̄t)

)
dt+ rβt ·

(
dXt − µ(at, b̄t)dt

)
This β determines the reputation factor Z.
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Faingold and Sannikov (2011)

{
θt
}
t≥0

=
{

(θ1,t, ..., θK,t)
}
t≥0

is consistent with (at, b̄t)t≥0 iff

(a) (θ1,0, ..., θK,0) = p for any given prior p ∈ ∆K−1

(b) for each k ∈ {0, 1, ...,K} and t ∈ [0,∞)

dθk,t = γk(at, b̄t, θt) · σ−1(b̄t)
(
dXt − µθ(at, b̄t)dt

)
• γ0(at, b̄t, θt) ≡ θ0,tσ

−1(b̄t)
(
µ(at, b̄t)− µθ(at, b̄t)

)
• γk(at, b̄t, θt) ≡ θk,tσ−1(b̄t)

(
µ(a∗k, b̄t)− µθ(at, b̄t)

)
• µθ(at, b̄t) ≡ θ0,tµ(at, b̄t) +

K∑
k=1

θk,tµ(a∗k, b̄t)

11 / 34



PDE

By letting Wt = U(θt), on ∆K−1 := ∆K−1 ∪ ∂∆K−1,

1

2

K∑
i,j=1

γiγjUθiθj (θ) +

K∑
i=1

γ0γi
θ0

Uθi(θ)− rU(θ) = −rg, (1)

• a := Na
(
θ, Z

)
∈ A ⊂ R

• b := Nb
(
θ, Z

)
∈ B ⊂ R

• Z(θ) = Z(θ,∇U(θ)) is the reputation factor

This is a 2nd-order quasi-linear PDE
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Problem 1

The first problem is the Nonlinearity.

- γi is a function of U through the optimal actions

We get around this difficulty by an iterative procedure:

1 Pick arbitrary Lipschitz continuous best response functions
and transform the quasilinear PDE into an linear elliptic PDE.

2 Take the solution of the linear elliptic PDE and use it to
derive the new optimal actions.

3 Return to Step 1 and iterate.
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Problem 2

The second problem is Boundary Conditions

- Need the value attained by U we are solving for on ∂∆K−1

- The boundary conditions in FS(2011) are much simpler

This problem is resolved by using state-of-the-art techniques in the
PDE literature:

1 Omit the conditions for those points that are never touched

2 Our PDE would never touch the boundary

3 Every such PDE possesses a continuous solution
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Problem 3

The third problem is Iteration

- Need to ensure that the intermediate Un at each step is
differentiable

- Unfortunately, we know that it is only continuous

This is where we use the technique of ‘mollification’

1 Use Tietze’s extension theorem to extend Un to RK

2 Apply mollification to this function on the larger domain

3 Obtain a differentiable function that is defined on a set
including ∆K−1
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As n→∞

We find a convergent subsequence of Un:

• Apply the Arzela-Ascoli Theorem

• This is a uniformly convergent sequence

However, this is not enough:

• Need to show the limit Un is the solution of the limit PDE

• Apply a version of Trotter-Kato Theorem

16 / 34



As the mollification goes to 0

We show the iterative procedure converges as the mollification
goes to zero.

• Apply the Arzela-Ascoli Theorem

Finally, we find the common limit of Un as both n→∞ and
mollification goes to 0

• This is one convergent sequence: not guarantee uniqueness

• Note that this is an approximate solution to the original PDE.
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Iteration

1. Pick any continuous functions a0(θ) and b0(θ) on ∆K−1.

2. Plug them into γi(a0(θ), b0(θ), θ) = γ0
i (θ) and

g(a0(θ), b0(θ)) = g0(θ).

3. Solve the linear PDE on ∆K−1 to find U0(θ) that is
continuous on ∆K−1.

4. Extend U0(θ) to a continuous function U0(θ) on RK .

5. Fix ρ > 0 and an open subset ∆ρ ⊂ RK such that

∆K−1 ⊂ ∆ρ and dist(y,∆K−1) ≤ ρ for y ∈ ∆ρ/∆
K−1.

6. Mollify U0(θ) on ∆ρ for 0 < ε(ρ) < ρ. Let the mollified

function U
ε(ρ)
0 (θ) ∈ C∞(∆K−1

ε(ρ) ) where ∆K−1 ⊂ ∆K−1
ε(ρ) ⊂ ∆ρ.
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Iteration (cont.)

7. Let a
ε(ρ)
1 (θ) = Na(θ,DU ε(ρ)

0 (θ)) and

b
ε(ρ)
1 (θ) = Nb(θ,DU

ε(ρ)
0 (θ)).

8. Plug them into γi(a
ε(ρ)
1 (θ), b

ε(ρ)
1 (θ), θ) = γ1

i,ε(ρ)(θ) and

g(a
ε(ρ)
1 (θ), b

ε(ρ)
1 (θ)) = g1

ε(ρ)(θ).

9. Go to Step 3

:

:

:
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Assumptions

(0) The best-response function of the reputation-builder is single
valued.

(1) Both best response functions Na(θ, Z) and Nb(θ, Z) are
Lipschitz continuous in the belief-reputation pair (θ, Z).

(2) For certain f(θ) belonging to the class of smooth functions on
a compact set, the function Z(θ) := Z(θ, f(θ)) is Lipschitz
continuous in θ:

|Z(θ1)− Z(θ2)| ≤ Cθ1,θ2 |θ1 − θ2|

where Cθ1,θ2 depends on only θ1 and θ2.
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Assumptions (cont.)

(3) For every θ ∈ ∆K−1,{
µ(a(θ), b(θ)), µ(a∗1, b(θ)), ..., µ(a∗K , b(θ))

}
is linearly

independent.

(4) For any θ = (θ1, ..., θK) ∈ ∆K−1, and a(θ) and b(θ) on
∆K−1,

K∑
k=1

{
θ2
k∑K

k=1 θ
2
k

− θk
}
µ(a∗k, b(θ)) 6= θ0µ(a(θ), b(θ))

(5) The payoff function g(a, b) is uniformly bounded and Lipschitz
continuous with g ≤ g ≤ ḡ.
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Non-attainable Boundary

Proposition 1. Under Condition (4), for any θ ∈ ∆K−1,

Pθ
{
θt ∈ ∂∆K−1 for some t > 0

}
= 0

at each step of 2nd-order linear elliptic PDE.

• Imperfect monitoring

• Every commitment type is alive on the small player’s support

• A Multiple types problem cannot be reduced to a Single type
problem
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When K = 2
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Eq. Action Correspondence

Definition. Let N : ∆K−1 ×R⇒ A×∆(B) be a best response
correspondence defined by:

N (θt,Z) ≡
{

(Na(θt,Z),Nb(θt,Z)) = (a, b) :

a ∈ argmaxa′∈Ag(a′, b̄) +
(
σ(b̄)σ(b̄)T

)−1 · ZTt · L
(
a, a′, {µk}Kk=1, b̄

)
b ∈ argmaxb′∈B θ0,th(a, b′, b̄) +

K∑
i=1

θi,th(a∗i , b
′, b̄) ∀b ∈ supp b̄

}

• a is a dynamic optimal action

• b is a static optimal action
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Eq. Action Correspondence (cont.)

where

• ZTt ≡ −
1

r

(
θ1,tUθ1,t , ..., θK,tUθK,t

)
·M(θ)

with M(θ) =


(1− θ1,t) θ2,t · · · θK,t

θ1,t (1− θ2,t) · · · θK,t

...
...

. . .
...

θ1,t θ2,t · · · (1− θK,t)


• L

(
a, a′, {µk}Kk=1, b̄

)
=

 (µ1 − µ(a, b̄)) · µ(a′, b̄)
...

(µK − µ(a, b̄)) · µ(a′, b̄)


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Existence of Approximate Solution

Theorem 1. Under Assumptions, for any r > 0, there exists an

approximate Markov equilibrium payoff function U(·) on ∆
K−1

to
the PDE (1):

1

2

K∑
i,j=1

γiγjUθiθj (θ) +

K∑
i=1

γ0γi
θ0

Uθi(θ)− rU(θ) = −rg,

• a(θ) := Na
(
θ, Z(θ)

)
∈ A ⊂ R

• b(θ) := Nb
(
θ, Z(θ)

)
∈ B ⊂ R

where U(·) = lim
ρ→0

lim
n→∞

Un,ε(ρ)(·) for the solution, Un,ε(ρ)(·), at the

nth step PDE with ε(ρ)-mollification.
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Equilibrium Degeneracy

Let θ∗0 ≡ (0, ..., 0) ∈ ∆K−1 and θ∗k ≡ (0, ..., 0, 1, 0, ..., 0) ∈ ∆K−1

for any k ∈ {1, ...,K} that Tk is a Stackelberg type.

Propositioin 2 Suppose that small players are certain that the
large player is either a normal type T0 or a Stackelberg type Tj for
some j ∈ {1, ...,K}. Then, for any r > 0,

U(θ∗j ) ∈ g
(
N (θ∗j , r)

)
where U is the approximate Markov equilibrium payoff.
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Construction of Restricted Belief Spaces

For sufficiently small δ > 0, suppose that Dδ ⊂ ∆K−1 is a convex
and connected open subset with boundary ∂Dδ such that

(a) ∪δ>0 D
δ = ∆K−1 and Dδ1 ⊂ Dδ2 for any δ1 > δ2

(b) ∂Dδ
∣∣
Ωδ

= ∂∆K−1
∣∣
Ωδ

(c) ∂∆ε
δ ≡ ∂Dδ\Ωδ ⊂ ∪k∈{0,1,..,K}

{
θk > 1− δ

}
where Ωδ is the subset of ∂∆K−1 such that δ < θk < 1− δ for
some k ∈ {0, 1, ...,K} and θl = 0 for some l 6= k.
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A restricted belief space when K = 2
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A reduced PDE

For each δ > 0, r > 0, and ρ > 0, consider the reduced limit
(as n→∞) problem on Dδ:

1

2

K∑
i,j=1

γρi γ
ρ
jUθiθj (θ) +

K∑
i=1

γρ0γ
ρ
i

θ0
Uθi(θ)− rU(θ) = −rgρ, (2)

U δ(θ) =gρ
(
N (θ∗0, r)

)
on ∂∆ε

δ ∩ {θ0 > 1− δ}
U δ(θ) =gρ

(
N (θ∗1, r)

)
on ∂∆ε

δ ∩ {θ1 > 1− δ}
...

U δ(θ) =gρ
(
N (θ∗m, r)

)
on ∂∆ε

δ ∩ {θm > 1− δ}

where {1, ...,m} ⊂ {1, ...,K} is a set of Stackelberg types.
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A reduced problem when K = 2
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Stochastic representation on Dδ

Proposition 3. Under Assumptions, the payoff U δε(ρ)(θ) that is a

solution to PDE (2) has the following form on Dδ: for any θ ∈ Dδ,
r > 0, and ε(ρ) > 0,

U δε(ρ)(θ) = Eθ

[
g(θτδ) exp{−rτ δ}

]
+ rEθ

∫ τδ

0
g(θs) exp{−rs}ds

where τ δ ≡ inf
{
t > 0

∣∣ θt /∈ Dδ
}

. Furthermore, U δε(ρ)(θ) satisfies
the followings boundary conditions : for any j ∈ {0, 1, ...,K},

U δε(ρ)(θτδ) = gρ
(
N (θ∗j , r)

)
on ∂∆ε

δ ∩ {θj > 1− δ}
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Stochastic representation on ∆K−1

Theorem 2. Under Assumptions, the ε(ρ)-Markov equilibrium
payoff Uε(ρ)(θ) on ∆K−1 is given by: for any given θ ∈ ∆K−1 and
r > 0,

Uε(ρ)(θ) = Eθ

[
g(θτ ) exp{−rτ}

]
+ rEθ

∫ τ

0
g(θs) exp{−rs}ds

where τ ≡ lim
δ→0

τ δ.

Furthermore, for each j-th vertex θ∗j ∈ ∂M ,

lim
θ→θ∗j

Uε(ρ)(θ) = gρ
(
N (θ∗j , r)

)
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Conclusion

With multiple commitment types,

• Characterize the optimal equation for the Eq. payoff

• Find an approx. Markov equilibrium

• Find a stochastic representation of the approx. Eq. Payoff

Ongoing research

• What about the convergence of the stochastic representation?

• What about the approximate equilibrium actions?

Future research

• Numerical Analysis?
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